Implementing Abstractions

Part One

Previously on CS106B...

class RandomBag {
public:
void add(int value);
int removeRandom();

int size() const;
bool isEmpty() const;

private:
Vector<int> elems;
}s

class RandomBag {
public:
void add(int value);
int removeRandom();

int size() const;
bool isEmpty() const;

private:
Vector<int> elems;
}s

[RandomBag

lis built using

E Vector [Map [Lexicon

l is built using l is built using l is built using

Dynamic Memory Allocation

Dynamic Memory Allocation

» Types like Vector, Map, Set, etc. that store a
variable number of items need space to store
those elements.

« When you use those types as a client, they just
“work” and somehow figure out where to store
things. You as the end user don’t see how.

* Internally, those types use a technique called
dynamic memory allocation to get space
where they can put their elements.

« How they do this - and how you can do this in
your own code - is our next major topic.

A Change in Perspective

 Key Question From Before: How do we use the Map, Vector,
etc. to model and solve complex problems?

 Key Question For Now: How can we use the simple tools
afforded by C++ to build things like Map, Vector, etc.?

* The coding techniques that go into this will subjectively feel
very different than what we’ve seen so far.

 There will be fewer tools available to you.
 Those tools require different mental models than what you’re used to.

« And yet, by learning how to use them:
* You’'ll learn more about how the computer actually works.

* You'll see how to build complex systems out of simple parts.

* You'll get an appreciation for just how clever the techniques that
power the Map, Set, and Vector are.

Dynamic Allocation: The Basics

string* ptr;

The variable ptr has type

string*

rather than string. We’ll
explain this in a moment.

string* ptr;
ptr = new string[3];

string* ptr;
ptr = new string[3];

This is an array of three
strings. I'll represent it
as a three-story building.

string* ptr;
ptr = new string[3];

This is an array of three
strings. I'll represent it
as a three-story building.

string* ptr;
ptr = new string[3];

string* ptr; . .
ptr = new string[3]; The variable ptr points to
an array of strings. It’s

therefore called a pointer.

Since ptr points to an array
of strings, we give it the
type string*.

string* ptr;
ptr = new string[3];

The array itself
is this building
over here.

The variable ptr
just points to
where the array is.

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";

Coffee Shop

string* ptr;
ptr =
ptr[o]
ptr1]

new string[3];

"Coffee Shop";
"Of fice Space";

Coffee Shop

string* ptr;
ptr = new
ptr[o]
ptr1]

string[3];
"Coffee Shop";
"Of fice Space";

Office Space

Coffee Shop

string* ptr;

ptr = new string[3];
ptr[0o] "Coffee Shop";
ptr[1] "Of fice Space";
ptr[2] "Residential”;

Office Space

Coffee Shop

string* ptr;
ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

g 2 Residential
/ = 1 Of fice Space

0 Coffee Shop

string* ptr;
new string[3];

ptr =
ptr[o]
ptr1]
ptr[2]

"Coffee Shop";

"Of fice Space";

"Residential";

3

2 Residential

1 Office Space

0 Coffee Shop

This building will always be

exactly three stories tall. You

cannot add or remove floors.
(“Conservation of mass.”)

Arrays of ints, doubles,

int* ptr = new int[4]; chars, or bools initially
have garbage values.

Other types use good defaults.

Arrays of ints, doubles,
int* ptr = new int[4]; chars, or bools initially
cout << ptr[0] << endl; have garbage values.
Other types use good defaults.

int* ptr = new int[4];
cout << ptr[0] << endl;

This might print
different numbers
from run to run of
the same program.

Arrays of ints, doubles,
chars, or bools initially
have garbage values.
Other types use good defaults.

string* ptr = new string[3];

string* ptr = new string[3];

string* ptr = new string[3];
ptr[o]
ptr1]
ptr[2]

"Coffee Shop";
"Of fice Space";
"Residential";

string* ptr = new string[3];
ptr[o]
ptr1]
ptr[2]

"Coffee Shop";
"Of fice Space";
"Residential";

Residential

Office Space

Coffee Shop

string* ptr = new string[3];

ptri
ptr1]
ptr2]

ptr[

0

"Coffee Shop";
"Of fice Space";
"Residential";

"Restaurant"; // Uh..

Arrays in C++ do not do any bounds
checking. Writing off the end of
an array might crash, might corrupt
other data, or might do nothing.

Residential

Office Space

Coffee Shop

string*
t =
ptr new string[3];

string*
t =
ptr new string[3];

string* ptr = new string[3];
ptr[0]
ptr1]
ptr2]

"Coffee Shop";
"Of fice Space”;
"Residential";

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential”;

O _al

/ = Residential

Office Space

i i Coffee Shop

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential”;

string* ptr2 = ptr;

/ = Residential

Office Space

Coffee Shop

string* ptr = new string[3]; Assigning one pointer to

ptr[o] = :Coffee ShoP"ﬁ another makes them both
ptr[1] = "Office Space"; point to the same array.
ptr[2] = "Residential";

string* ptr2 = ptr;

/ = Residential = '\

Office Space

Coffee Shop

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential”;

string* ptr2 = ptr;
ptr2[0] = "Barber Shop";

/ = Residential = '\

Office Space

Coffee Shop

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential”;

string* ptr2 = ptr;
ptr2[0] = "Barber Shop";

/ = Residential = '\

Office Space

Barber Shop

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

string* ptr2 = ptr;
ptr2[0] = "Barber Shop";
cout << ptr[0] << endl;

/ = Residential = '\

Office Space

Barber Shop

string* ptr;

Pointers always point
somewhere, even if you don’t
initialize them.

An uninitialized pointer
(sometimes called a garbage
pointer) is a pointer that
hasn’t been assigned to point
to anything.

Uninitialized pointers point
somewhere, but there’s no

way to predict exactly where.

string* ptr; " \
ptr[1] = "Day Care"; // Uh.. ’_,—' \‘
—’—’ e |
v Cal
\ Day ——’—l
\ ’,—‘
\ _,—’
\ ”—’
-

C++ does not do any safety
checks when writing through
uninitialized pointers. It
might crash your program. It
might corrupt data. Or it
might seemingly do nothing.

void makeAnArray() {
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

}

void makeAnArray() {
string* ptr = new string[3];
}

mt“() £
for (int 1 = 0; 1 < 5; 1++) {]
yi{Js

}

}

void makeAnArray() {
string* ptr = new string[3];

}

int main() {

for (ot i = Q; 4 < 5; 1++) {
makeAnArray();

}

Ivoid makeAnArray() {'
String~ ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

}

aN

void_makeAnArray()

[
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

}

aN

void_makeAnArray()

[
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

}

void makeAnArray() {
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

void makeAnArray() {
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; i++) {
makeAnArray();

}

The local variable ptr is
cleaned up once the function
returns - but the array itself

remains!

This is different than how
the container types work.

Anything created with new[]
persists until explicitly
cleaned up.

void makeAnArray() {
string* ptr = new string[3];

}

int main() {

for (ot i = Q; 4 < 5; 1++) {
makeAnArray();

}

[yoid makeAnArray() {
stromg*~Tptr—TeWw string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

}

voild—makelAnArray ()

;
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

A

}

voild—makelAnArray ()

;
string* ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

A

}

v
o
1
id
m
a
k
eAnA
-
-
a
y
()
{

i

n

t

"
:
n
é
é
K
E
A
;
Ar
rg;(
)
;<
5
1
+
+
)
{

S

t

-

ing
*
P
t
-
n
e
W
S
tr
1
n
g
[
3
]

void makeAnArray() {
string* ptr = new string[3];

}

int main() {

for (ot i = Q; 4 < 5; 1++) {
makeAnArray();

}

lvoid makeAnArray() {I
String~ ptr = new string[3];
}

int main() {
for (int 1 = 0; 1 < 5; 1++) {
makeAnArray();

}

/'\

voi vy £
string* ptr = new

string[3];

}

int main() {

for (int 1 = 0; 1 < 5; 1++) {

makeAnArray();
}

N

v

Out of space!

Cleaning Up

When declaring local variables or parameters,
C++ will automatically handle memory allocation and
deallocation for you.

When using new[], you are responsible for deallocating
the memory you allocate.

If you don't, you get a memory leak. Your program
will never be able to use that memory again.

 Too many leaks can cause a program to slow down
and eventually crash as memory becomes more and
more scarce!

(Realistically, that previous example wouldn’t allocate
enough memory to crash the program. You need to
leak a bunch of memory before that will happen.)

string* ptr = new string[3];

RN

string* ptr = new string[3];

string* ptr = new string[3];
ptr[o]
ptr[1]
ptr[2]

"Coffee Shop";
"Office Space";
"Residential";

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

@ Residential

/ = Office Space

Coffee Shop

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;

Residential

Office Space

Coffee Shop

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;

*
. delete[]

7

string* ptr = new string[3];

ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;

The variable ptr is
still here. It will stick
around until the
function returns.

We’ve freed up space
for future buildings
(arrays).

[== mececcsccsma=a- >
/ ptr still points where
the array once was.

It’s called a
dangling pointer.

string* ptr = new string[3]; C++ has no safety checks for
ptr[0] = "Coffee Shop"; reading/writing deallocated memory.
ptr[1] = "Office Space"; It might crash your program, it might
ptr[2] = "Residential"; do nothing, or might corrupt data.

delete[] ptr;
ptr[1] = "Library"; // Uh..

I

I

I

I

I

I

I

I

I

I

I

I

I

v

—

‘—Io

o
=
Q)
o
<

To Summarize

» Pointers point. Arrays hold things. There are two
partners in the dance.

* You can create arrays of a fixed size at runtime by
using new[].

 C++ arrays don’t know their lengths and have no
bounds-checking. With great power comes great
responsibility.

* You are responsible for freeing any memory you
explicitly allocate by calling delete[].

* Once you’'ve deleted the memory pointed at by a
pointer, you have a dangling pointer and shouldn’t
read or write from it.

Implementing Stack

Implementing Stack

* Last time, we saw how to implement
RandomBag in terms of Vector.

 We could also implement Stack in terms
of Vector.

« What if we wanted to implement the
Stack without relying on any other

CO.

lections?

e e

's build the stack directly!

You Gotta Start Somewhere

* Our initial implementation of the stack will
be a bounded stack with a maximum
capacity.

 We’ll allocate a fixed amount of storage
space for the elements, then write them into
the array as they’re pushed.

* If we run out of space, we’ll report an error.

* Next time, we’ll update this code so that we
can have a stack without any fixed maximum
capacity.

What We Have

private:

int* elems;
int allocatedSize;
int logicalSize;

logicalSize

' 9Z15pa31ed0]1P

\

()

private:
int* elems;

int allocatedSize;
int logicalSize;

' 9Z15pa31ed0]1P

J

logicalSize

\

private:
int* elems;

int allocatedSize;
int logicalSize;

' 9Z15pa31ed0]1P

J

logicalSize

\ &

private:

int* elems;
int allocatedSize;
int logicalSize;

logicalSize

J

®
)

' 9Z15pa31ed0]1P

\

private:

int* elems;
int allocatedSize;
int logicalSize;

logicalSize

J

' 9Z15pa31ed0]1P

\ &

private:
int* elems;
int allocatedSize;
int logicalSize;

©

7

' 9Z15pa31ed0]1P

logicalSize

private:
int* elems;
int allocatedSize;
int logicalSize;

©

7

' 9Z15pa31ed0]1P

logicalSize

private:

int* elems;
int allocatedSize;
int logicalSize;

logicalSize

J

' 9Z15pa31ed0]1P

\ &

private:
int* elems;

int allocatedSize;
int logicalSize;

' 9Z15pa31ed0]1P

J

logicalSize

\ &

private:

int* elems;
int allocatedSize;
int logicalSize;

logicalSize

> 4

®
)

' 9Z15pa31ed0]1P

\

Before We Start: A Problem

Cradle to Grave

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

Cradle to Grave

ntr ety -f------ - .
' OurStack stack; .

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return 0O;

Cradle to Grave

element
array

allocated
size

logical
size

ntr ety -f------ - .
' OurStack stack; .

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return 0;

Cradle to Grave

element
array

allocated
size

logical
size

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

'----~

-----'

Constructors

A constructor is a
special member function
used to set up the class
before it is used.

class OurStack {
public:

voild push(int value);

« The constructor is int peek() const;
automatically called int pop();
when the object is int size() const;
created. bool isEmpty() const;
« The constructor for a private:
s .
class named ClassName int* elems;
. int allocatedSize;
has signature int logicalSize;

}s

ClassName(args);

Constructors

* A constructor is a —
special member function ;ugﬁc.ur tack {
used to set up the class ourstack():

before it is used.
voild push(int value);

« The constructor is int peek() const;
automatically called int pop();
when the object is int size() const;
created. bool isEmpty() const;
« The constructor for a private:
s .
class named ClassName int* elems;
. int allocatedSize;
has signature int logicalSize;

}s

ClassName(args);

Implementing our Operations

137 | 42

2718

!

element
array

allocated
size

logical
size

27

class OurStack {

public:
OurStack();
void push(int value);
int peek() const;
int pop();
int size() const;
bool isEmpty() const;
private:
int* elems;
int allocatedSize;
int LlogicalSize;

}s

314

index 0 index1 index?2 index 3

voild push(int value);

137 | 42 2718

!

element
array

allocated
size 4

logical
size 3

index 0 index1 index?2 index 3

voild push(int value);

137 | 42 (2718|314

!

element
array

allocated
size 4

logical
size 4

index 0 index1 index2 index 3
137 | 42 |2718| 314
element
array
allocated
size 4
logical
size 4

class OurStack {

public:
OurStack();
void push(int value);
int peek() const;
int pop();
int size() const;
bool isEmpty() const;
private:
int* elems;
int allocatedSize;
int LlogicalSize;
};

index 0

index 1

index 2

index 3

137

42

2718

314

!

element
array

allocated
size

logical
size

int pop();

index 0

index 1

index 2 index 3

137

42

W 314

!

element
array

allocated
size

logical
size

int pop();

index 0 index 1

index 2 index 3

137 | 42

W 314

!

element
array

allocated
size

logical
size

class OurStack {

public:
OurStack();
void push(int value);
int peek() const;
int pop();
int size() const;
bool isEmpty() const;
private:
int* elems;
int allocatedSize;
int LlogicalSize;
};

So... we're done?

Cradle to Grave, Take II

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

Cradle to Grave, Take II

ntr ety -f------ - .
' OurStack stack; .

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

Cradle to Grave, Take II

element
array

allocated
size

logical
size

277

277

Nt Py - m = oo

' QurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return 0;

Cradle to Grave, Take II

element
array

allocated
size

logical
size

277

277

in{

OurStack: :0urStack() {
logicalSize = 0;
allocatedSize = kInitialSize;
elems = new int[allocatedSize];

}

Cradle to Grave, Take II

element
array

allocated
size

logical
size

in{

OurStack: :0urStack() {
logicalSize = 0;
allocatedSize = kInitialSize;
elems = new int[allocatedSize];

}

Cradle to Grave, Take II

element
array

allocated
size

logical
size

ntr ety -f------ - .
' OurStack stack; .

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

Cradle to Grave, Take II

int main() {
OurStack stack;

element R e LEED .
array :/* The stack lives a rich, happy,.
E * fulfilling life, the kind we |
allocated 41 : :/all aspire to. !
size o R
return O;
logical O

size

Cradle to Grave, Take II

element
array

allocated
size

logical
size

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

Cradle to Grave, Take II

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

Cradle to Grave, Take II

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

Destructors

* A destructor is a special
member function
responsible for cleaning up
an object's memory.

* It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

e The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:
OurStack();

void
int
int

int
bool

private:

}s

int*
int
int

push(int value);
peek() const;

pop();

size() const;
isEmpty() const;

elems;
allocatedSize;
logicalSize;

Destructors

* A destructor is a special
member function
responsible for cleaning up
an object's memory.

* It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

e The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:

OurStack();
~0urStack();

void push(int value);
int peek() const;

int pop();

int size() const;
bool isEmpty() const;

private:

}s

int* elems;
int allocatedSize;
int LlogicalSize;

Cradle to Grave, Take III

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

Cradle to Grave, Take III

ntr ety -f------ - .
' OurStack stack; .

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

}

Cradle to Grave, Take III

element
array

allocated
size

logical
size

277

277

Nt Py - m = oo

' QurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return 0;

Cradle to Grave, Take III

element
array

allocated
size

logical
size

277

277

in{

OurStack: :0urStack() {
logicalSize = 0;
allocatedSize = kInitialSize;
elems = new int[allocatedSize];

}

Cradle to Grave, Take III

element
array

allocated
size

logical
size

in{

OurStack: :0urStack() {
logicalSize = 0;
allocatedSize = kInitialSize;
elems = new int[allocatedSize];

}

Cradle to Grave, Take III

element
array

allocated
size

logical
size

ntr ety -f------ - .
' OurStack stack; .

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

*/

return O;

Cradle to Grave, Take III

int main() {
OurStack stack;

element R e LEED .
array :/* The stack lives a rich, happy,.
E * fulfilling life, the kind we |
allocated 41 : :/all aspire to. !
size o R
return O;
logical O

size

Cradle to Grave, Take III

element
array

allocated
size

logical
size

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

Cradle to Grave, Take III

-

in-l- ma1inl N\ [
element
array
OurStack: :~0OurStack() {
allocated 4 delete[] elems;
size }
logical
size O

Cradle to Grave, Take III

in-l- ma1inl N\ [
element
array
OurStack: :~0OurStack() {
allocated 4 delete[] elems;
size }
logical
size O

Cradle to Grave, Take III

!

1ot—mna ol [

element

array

OurStack: :~0OurStack() {

allocated 4 delete[] elems;

size }

logical

size O

Cradle to Grave, Take III

element
array

allocated
size

logical
size

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

Cradle to Grave, Take III

int main() {
OurStack stack;

/* The stack lives a rich, happy,
* fulfilling life, the kind we
* all aspire to.

To Summarize

* You can create arrays of a fixed size at
runtime by using new([].

* You are responsible for freeing any
memory you explicitly allocate by calling
delete| |].

 Constructors are used to set up a class’s
internal state so that it’s in a good place.

e Destructors are used to free resource
that a class allocates.

Next Time

« Making Stack Grow!

» Different approaches to Stack growth.
* Analysis of these approaches.
* The reality: everything is a tradeoff!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137

