

Implementing Abstractions
Part One

Previously on CS106B…

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

class RandomBag {
public:
 void add(int value);
 int removeRandom();

 int size() const;
 bool isEmpty() const;

private:
 Vector<int> elems;
};

Vector Map Lexicon

RandomBag

 is built using

Dynamic Memory Allocation

is built using is built using is built using

Dynamic Memory Allocation
● Types like Vector, Map, Set, etc. that store a

variable number of items need space to store
those elements.

● When you use those types as a client, they just
“work” and somehow figure out where to store
things. You as the end user don’t see how.

● Internally, those types use a technique called
dynamic memory allocation to get space
where they can put their elements.

● How they do this – and how you can do this in
your own code – is our next major topic.

A Change in Perspective
● Key Question From Before: How do we use the Map, Vector,

etc. to model and solve complex problems?
● Key Question For Now: How can we use the simple tools

afforded by C++ to build things like Map, Vector, etc.?
● The coding techniques that go into this will subjectively feel

very different than what we’ve seen so far.
● There will be fewer tools available to you.
● Those tools require different mental models than what you’re used to.

● And yet, by learning how to use them:
● You’ll learn more about how the computer actually works.
● You’ll see how to build complex systems out of simple parts.
● You’ll get an appreciation for just how clever the techniques that

power the Map, Set, and Vector are.

Dynamic Allocation: The Basics

string* ptr;

ptr

The variable ptr has type

string*

rather than string. We’ll
explain this in a moment.

string* ptr;
ptr = new string[3];

ptr

string* ptr;
ptr = new string[3];

ptr

This is an array of three
strings. I’ll represent it

as a three-story building.

string* ptr;
ptr = new string[3];

0

1

2

ptr

This is an array of three
strings. I’ll represent it

as a three-story building.

 ☞

string* ptr;
ptr = new string[3];

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];

ptr

The variable ptr points to
an array of strings. It’s

therefore called a pointer.

Since ptr points to an array
of strings, we give it the

type string*.

0

1

2

 ☞

string* ptr;
ptr = new string[3];

ptr

The variable ptr
just points to

where the array is.

The array itself
is this building

over here.

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";

Coffee Shop

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";

Coffee Shop

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";

Coffee Shop

Office Space

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

Coffee Shop

Office Space

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

Coffee Shop

Office Space

Residential

ptr

0

1

2

 ☞

string* ptr;
ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

Coffee Shop

Office Space

Residential

ptr

This building will always be
exactly three stories tall. You
cannot add or remove floors.

(“Conservation of mass.”)

0

1

2

int* ptr = new int[4];

ptr

 ☞

int* ptr = new int[4];

ptr

Arrays of ints, doubles,
chars, or bools initially
have garbage values.

Other types use good defaults.

 ☞

int* ptr = new int[4];
cout << ptr[0] << endl;

ptr

Arrays of ints, doubles,
chars, or bools initially
have garbage values.

Other types use good defaults.

 ☞

int* ptr = new int[4];
cout << ptr[0] << endl;

ptr

Arrays of ints, doubles,
chars, or bools initially
have garbage values.

Other types use good defaults.
This might print

different numbers
from run to run of
the same program.

string* ptr = new string[3];

ptr

 ☞

string* ptr = new string[3];

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

Coffee Shop

Office Space

Residential

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

ptr[3] = "Restaurant"; // Uh…

Coffee Shop

Office Space

Residential

ptr

Arrays in C++ do not do any bounds
checking. Writing off the end of

an array might crash, might corrupt
other data, or might do nothing.

ptr

string* ptr = new string[3];

 ☞

ptr

string* ptr = new string[3];

 ☞

ptr

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

Coffee Shop

Office Space

Residential ☞

ptr

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

 ☞

Coffee Shop

Office Space

Residential

ptr ptr2

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

string* ptr2 = ptr;

 ☞

Coffee Shop

Office Space

Residential

ptr

 ☜

ptr2

Assigning one pointer to
another makes them both
point to the same array.

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

string* ptr2 = ptr;

 ☞

Coffee Shop

Office Space

Residential

ptr

 ☜

ptr2

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

string* ptr2 = ptr;
ptr2[0] = "Barber Shop";

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

string* ptr2 = ptr;
ptr2[0] = "Barber Shop";

Barber Shop

Office Space

Residential

ptr

 ☜

ptr2

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

string* ptr2 = ptr;
ptr2[0] = "Barber Shop";
cout << ptr[0] << endl;

Barber Shop

Office Space

Residential

ptr

 ☜

ptr2

string* ptr;

 ☞

ptr

Pointers always point
somewhere, even if you don’t

initialize them.

An uninitialized pointer
(sometimes called a garbage

pointer) is a pointer that
hasn’t been assigned to point

to anything.

Uninitialized pointers point
somewhere, but there’s no

way to predict exactly where.

 ☞

string* ptr;
ptr[1] = "Day Care"; // Uh…

ptr

Day
Care

C++ does not do any safety
checks when writing through

uninitialized pointers. It
might crash your program. It

might corrupt data. Or it
might seemingly do nothing.

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

 ☞

ptr

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

 ☞

ptr

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

 ☞

ptr

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

The local variable ptr is
cleaned up once the function
returns – but the array itself

remains!

This is different than how
the container types work.

Anything created with new[]
persists until explicitly

cleaned up.

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

 ☞

ptr

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

 ☞

ptr

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

 ☞

ptr

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

void makeAnArray() {
 string* ptr = new string[3];
}

int main() {
 for (int i = 0; i < 5; i++) {
 makeAnArray();
 }
}

Out of space! ☞

ptr

Cleaning Up
● When declaring local variables or parameters,

C++ will automatically handle memory allocation and
deallocation for you.

● When using new[], you are responsible for deallocating
the memory you allocate.

● If you don't, you get a memory leak. Your program
will never be able to use that memory again.
● Too many leaks can cause a program to slow down

and eventually crash as memory becomes more and
more scarce!

● (Realistically, that previous example wouldn’t allocate
enough memory to crash the program. You need to
leak a bunch of memory before that will happen.)

string* ptr = new string[3];

 ☞

ptr

 ☞

string* ptr = new string[3];

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

Coffee Shop

Office Space

Residential

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;

Coffee Shop

Office Space

Residential

ptr

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;

ptr

Coffee Shop

Office Space

Residential

delete[]

Dynamic

Deallocation!

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;

ptr

We’ve freed up space
for future buildings

(arrays).

The variable ptr is
still here. It will stick

around until the
function returns.

ptr still points where
the array once was.

It’s called a
dangling pointer.

 ☞

string* ptr = new string[3];
ptr[0] = "Coffee Shop";
ptr[1] = "Office Space";
ptr[2] = "Residential";

delete[] ptr;
ptr[1] = "Library"; // Uh…

ptr

Library

C++ has no safety checks for
reading/writing deallocated memory.
It might crash your program, it might

do nothing, or might corrupt data.

To Summarize
● Pointers point. Arrays hold things. There are two

partners in the dance.
● You can create arrays of a fixed size at runtime by

using new[].
● C++ arrays don’t know their lengths and have no

bounds-checking. With great power comes great
responsibility.

● You are responsible for freeing any memory you
explicitly allocate by calling delete[].

● Once you’ve deleted the memory pointed at by a
pointer, you have a dangling pointer and shouldn’t
read or write from it.

Implementing Stack

Implementing Stack
● Last time, we saw how to implement
RandomBag in terms of Vector.

● We could also implement Stack in terms
of Vector.

● What if we wanted to implement the
Stack without relying on any other
collections?

● Let's build the stack directly!

You Gotta Start Somewhere
● Our initial implementation of the stack will

be a bounded stack with a maximum
capacity.

● We’ll allocate a fixed amount of storage
space for the elements, then write them into
the array as they’re pushed.

● If we run out of space, we’ll report an error.
● Next time, we’ll update this code so that we

can have a stack without any fixed maximum
capacity.

What We Have

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

private:
 int* elems;
 int allocatedSize;
 int logicalSize;

allocatedSize

logicalSize

 ☞

elems

Before We Start: A Problem

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array

Cradle to Grave

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array

Uninitialized

Pointer!

Constructors
● A constructor is a

special member function
used to set up the class
before it is used.

● The constructor is
automatically called
when the object is
created.

● The constructor for a
class named ClassName
has signature

ClassName(args);

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Constructors
● A constructor is a

special member function
used to set up the class
before it is used.

● The constructor is
automatically called
when the object is
created.

● The constructor for a
class named ClassName
has signature

ClassName(args);

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Implementing our Operations

4

3

allocated
size

logical
size

element
array

137 42 2718 ??

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

4

3

allocated
size

logical
size

element
array

137 42 2718 ??

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

index 0 index 1 index 2 index 3

314

4

4

allocated
size

logical
size

element
array

137 42 2718 ??

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

314
index 0 index 1 index 2 index 3

4

4

allocated
size

logical
size

element
array

137 42 2718 ??

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

314
index 0 index 1 index 2 index 3

4

4

allocated
size

logical
size

element
array

137 42 2718 ??

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

314
index 0 index 1 index 2 index 3

4

3

allocated
size

logical
size

element
array

137 42 2718 314

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

index 0 index 1 index 2 index 3

4

3

allocated
size

logical
size

element
array

137 42 2718 314

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

index 0 index 1 index 2 index 3

So… we’re done?

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave, Take II

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Memory
Leak!

Destructors
● A destructor is a special

member function
responsible for cleaning up
an object's memory.

● It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

● The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:
 OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Destructors
● A destructor is a special

member function
responsible for cleaning up
an object's memory.

● It’s automatically called
whenever an object’s
lifetime ends (for example,
if it’s a local variable that
goes out of scope.)

● The destructor for a class
named ClassName has
signature

~ClassName();

class OurStack {
public:
 OurStack();
 ~OurStack();

 void push(int value);
 int peek() const;
 int pop();

 int size() const;
 bool isEmpty() const;

private:
 int* elems;
 int allocatedSize;
 int logicalSize;
};

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

???

???

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array OurStack::OurStack() {

 logicalSize = 0;
 allocatedSize = kInitialSize;
 elems = new int[allocatedSize];
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

delete[]

OurStack::~OurStack() {
 delete[] elems;
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

delete[]
Dynamic

Deallocation!

OurStack::~OurStack() {
 delete[] elems;
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

OurStack::~OurStack() {
 delete[] elems;
}

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

4

0

allocated
size

logical
size

element
array

Cradle to Grave, Take III

int main() {
 OurStack stack;

 /* The stack lives a rich, happy,
 * fulfilling life, the kind we
 * all aspire to.
 */

 return 0;
}

To Summarize
● You can create arrays of a fixed size at

runtime by using new[].
● You are responsible for freeing any

memory you explicitly allocate by calling
delete[].

● Constructors are used to set up a class’s
internal state so that it’s in a good place.

● Destructors are used to free resource
that a class allocates.

Next Time
● Making Stack Grow!

● Different approaches to Stack growth.
● Analysis of these approaches.
● The reality: everything is a tradeoff!

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113
	Slide 114
	Slide 115
	Slide 116
	Slide 117
	Slide 118
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137

